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Braneworld models with induced gravity have the potential to replace dark energy as the explana-
tion for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze
and Porrati (DGP) demonstrated the existence of a “self–accelerating” branch of background solu-
tions, but suffered from the presence of ghosts. We present a new large class of braneworld models
which generalize the DGP model. Our models have negative curvature in the bulk, allow a second
brane, and have general brane tensions and localized curvature terms. We exhibit three different
kinds of ghosts, associated to the graviton zero mode, the radion, and the longitudinal components
of massive graviton modes. The latter two species occur in the DGP model, for negative and positive
brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly
correlated with each other, but are not always linked to the feature of self–acceleration. Our models
are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts,
and perhaps for eliminating them altogether.

PACS numbers: 11.25.-w,04.50.+h,98.80.-k

I. INTRODUCTION

Models with extra spatial dimensions provide new perspectives on many long standing problems of particle physics
and gravity. One of the most exciting suggestions [1, 2] is that an extra dimension, rather than dark energy, may be
the origin of the currently accelerating expansion of the Universe. The original simple model of Dvali, Gabadadze
and Porrati (DGP) posits that we live on a codimension one brane in an infinite flat five-dimensional bulk [3]. As
generalized in [4], the model has only two relevant input parameters: a crossover scale rc determined by the ratio of
the 4d brane-localized gravity coupling with the 5d bulk one, and the tension of the brane. The Einstein equations
have two kinds of solutions: a normal branch and a “self–accelerating” branch; both branches cause a modification of
the effective 4d Friedmann equation, with the second one having the property that at sufficiently late times it gives
an accelerated expansion without the need of dark energy to drive it.

The DGP model has encountered many difficulties, but the one that looks most serious is the presence of ghosts
in the weakly–coupled long distance regime of the theory linearized around the self–accelerating background solution
[4]-[6]. The physical origin and meaning of these ghosts are not yet clear.

Ghosts, like tachyons, are often an indication of an instability of the theory perturbed around a given background.
Indeed it is not surprising that gravitating systems with nontrivial backgrounds including branes (in the absence of
supersymmetry) exhibit a variety of instabilities. In the case of DGP, it is natural to ask whether modified brane
setups might avoid ghosts and tachyons, while still exhibiting the key feature of self–acceleration.

In this paper we present a large class of warped brane setups that generalize the DGP model. Our basic idea is to use
an AdS5 bulk space, taking advantage of the fact that slices of AdS5 can be flat, AdS4, or dS4. We consider models
with one or two branes, taking the brane tensions and the brane-localized gravity couplings as input parameters,
along with the bulk cosmological constant. We obtain background solutions with both normal and self–accelerating
branches, for branes that are either AdS4 or dS4. The self–accelerating branches for the de Sitter branes give models
precisely analogous to the DGP model; the self–accelerating branches for AdS4 branes are not of obvious cosmological
interest, but allow us to generalize the well-understood physics of the Karch-Randall model [7].

In two previous papers [8, 9] we set up the necessary tools to study generic warped models with arbitrary brane
tensions and localized curvature terms. The size of the extra dimension and the brane curvature are well defined
functions of the input brane parameters, and therefore by varying the latter we can parametrize a large number
of different models. In one limit we make explicit contact with the original DGP model, while in another limit
we reproduce the AdS5/AdS4 Karch-Randall model. In [8, 9] we studied the phenomenology of AdS4 branes for
background solutions on the standard branch, exhibiting a variety of ghosts and tachyons in parts of the parameter
space of models. In this article we will extend that study to the self–accelerating branch and also consider the case
in which the branes are dS4. We will pay particular attention to the presence of ghosts in the spectrum and how this
is related to which branch we are considering.

The outline of the paper is the following. In Section II we describe some basic facts about ghosts in theories with
gravity. In Section III we review the main features of our new models, extending the results of [8, 9] to the self–
accelerating branch and dS4 branes. The spectrum, with particular emphasis on the presence of ghosts and tachyons,
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is studied for the different cases in Section IV. Section V is devoted to our conclusions, and some technical details
are relegated to appendices.

II. GHOSTS AND GRAVITY

With the (–+++) metric signature, a canonical scalar field kinetic action in flat space is written

∫

d4x

(

−1

2
ηµν∂µφ∂νφ− 1

2
m2φ2

)

. (1)

Reversing the sign of the first term produces a ghost:

∫

d4x

(

1

2
ηµν∂µφ∂νφ− 1

2
m2φ2

)

. (2)

As discussed e.g. in [10], defining the ghost propagator with the usual Feynman iǫ prescription results in a nonunitary
theory with negative norm states; defining the propagator with the opposite iǫ prescription preserves unitarity but
induces a catastrophic instability from propagating negative energy states.

Thus kinetic ghosts are similar to tachyons, in that they can be regarded as instabilities. Indeed some ghosts are
also tachyons: this is the case in (2) for m2 > 0, since the solutions of the wave equation will be exponentials rather
than plane waves. As with tachyons, in some cases it may be possible to cure a ghost instability by perturbing around
a different ground state. Such a shift can be thought of as the nonperturbative formation of a tachyon or ghost
condensate; a tachyon condensate may produce a stable static ground state while a ghost condensate may produce a
time dependent but ghost–free ground state [11].

In addition to ghosts and tachyons, one might worry that simple scalar field theories can suffer from other diseases.
Suppose we add a derivative self-interaction term to (2):

∫

d4x

(

−1

2
ηµν∂µφ∂νφ− 1

2
m2φ2 +

c

2Λ4
(ηµν∂µφ∂νφ)2

)

, (3)

where Λ is the UV cutoff of this effective theory. For c < 0, this theory appears to have analyticity problems and
exhibits superluminal modes in the massless limit, despite a lack of tachyonic instability [12]. However Jenkins and
O’Connell have recently shown [13] that “positivity constraints” of this type are equivalent to a no–tachyon condition
in a (partial) UV completion. In other words, effective theories of the form (3) with c < 0 arise from integrating out
tachyons before curing the tachyonic instability. Thus kinetic ghost and tachyon instabilities appear to exhaust the
physically distinct diseases of scalar field theories.

This simple picture, however, is intrinsic to flat space propagators and flat space kinetic terms. Adding gravity to
the picture complicates the discussion of ghosts, and has led to much debate in the literature. Once we add gravity,
we must be on the lookout for new kinds of ghosts. In addition to scalar ghosts, the longitudinal mode of a massive
graviton can be a ghost. As we will see, even a massless graviton can be a ghost. Because gravity is a nonlinear
theory with a large local symmetry, we must also work harder to understand the physical significance of ghosts.

A. de Sitter ghosts

It was shown many years ago by Higuchi [14] that the longitudinal modes of massive gravitons can be ghosts if we
are in a de Sitter background. Letting 12H2 denote the constant de Sitter curvature, massive gravitons with mass in
the range 0 < m2 < 2H2 are ghosts. These correspond to nonunitary representations of the de Sitter group SO(4, 1),
as discussed in [15, 16], but the analysis of Deser and Waldron [17] shows that they are also kinetic ghosts. As we
will see in the next section using an explicit on-shell tensor decomposition, the effective kinetic term of a longitudinal
massive graviton mode s(x) in a dS4 background is given by:

3

2
m2(m2 − 2H2)

∫

d4x s(x)

(

−∂2
0 + ∇2

i − (m2 − 9

4
H2)

)

s(x) , (4)

where ∇2
i is the de Sitter Laplacian ∇2

i = ∂2
i /f(t)2, with f(t) = exp(Ht) coming from the dS4 background metric:

g00 = −1, gij = f2δij . From (4) we see immediately that the longitudinal mode is a ghost for 0 < m2 < 2H2. It would
also naively appear that the longitudinal mode is a tachyon for 0 < m2 < 9

4H2. However the analysis of tachyonic
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instabilities in dS4 is complicated by the fact that the naive Hamiltonian corresponding to the wave operator in (4)
has an explicit time-dependence from f(t) and is therefore not conserved. The operator corresponding to the actual
conserved energy is manifestly positive inside the de Sitter horizon for any m2 > 0, as shown in [17]. This is referred
to as a “mild” tachyonic instability in the last reference in [4]; for our purposes we will not call such modes tachyons,
reserving that name for cases such as m2 < 0 in (4) which resemble tachyons in flat space.

It was shown in [4] that the DGP model with positive brane tension contains a longitudinal massive graviton mode
ghost on the self–accelerating branch. Intriguingly, for negative brane tension the massive graviton ghost is absent,
replaced instead by a ghost radion scalar. In the warped models presented in the paper, we will find that these two
kinds of ghosts are also tightly related.

The physical interpretation of ghosts in theories with gravity can be obscured by the presence of local symmetries.
For example the DGP model in the limit of a tensionless brane has a massive graviton mode with m2 = 2H2;
the resulting 4d massive gravity theory has an enhanced “accidental” local symmetry beyond 4d general covariance
[18, 19]. Charmousis et al. found a ghost in this limit as well [4], but Deffayet et al have argued [20] that this mode is
actually a Lagrange multiplier enforcing an explicit gauge-fixing of the extra symmetry. This is an interesting special
case to be considered elsewhere.

B. when a ghost is not a ghost

It can be argued (incorrectly) that gravity renders the physical meaning of ghosts ambiguous. Consider, for example,
pure 4d Einstein gravity. Perform a conformal rescaling of the metric by the field redefinition

gµν →
(

1 +
φ

M

)

gµν , (5)

where φ(x) is a 4d scalar field and M is the reduced Planck mass. Now substitute the rescaled metric into the
Einstein-Hilbert action, assuming that the background metric before rescaling was flat:

√−gM2R → 3

2

1

1 + φ/M
ηµν∂µφ∂νφ . (6)

This looks like a kinetic ghost. Now suppose we start with a Lagrangian whose perturbation theory around flat space
is obviously ghost-free:

∫

d4x
√−g

(

M2R− 1

2
gµν∂µφ∂νφ

)

. (7)

It appears naively that by a simple field redefinition of the metric we can produce a ghost.
The flaw in this argument is that we have ignored the subtleties of general covariance and gauge-fixing [20]. Consider

again 4d Einstein gravity expanded around flat space: gµν = ηµν + hµν . As discussed in [8], the massless symmetric
tensor hµν can be decomposed as

hµν = βµν + ∂µvν + ∂νvµ + ∂µ∂νϕ1 + cµν + ∂µnν + ∂νnµ + ηµνϕ2 . (8)

Here βµν is traceless, transverse, and orthogonal to nµ, giving 2 degrees of freedom. Similarly vµ is transverse and
orthogonal to nµ, giving 2 degrees of freedom, while the longitudinal null vector nµ gives 1 more degree of freedom.
Lastly, cµν is traceless but not transverse, giving 3 degrees of freedom, which together with the two scalars ϕ1 and ϕ2

adds up to the total 10 degrees of freedom of hµν .
Obviously vµ, nµ and ϕ1 are the 4 pure gauge modes of 4d general covariance, while βµν gives the two traceless

transverse propagating degrees of freedom of an on-shell massless graviton. The four remaining degrees of freedom
represented by ϕ2 and cµν are subject to constraints from the equations of motion. In the absence of sources they are
constrained to vanish. Just as for the more familiar case of the time-like component of an abelian gauge field, these
modes do not really propagate. In the post-Newtonian approximation [21], ϕ2 is proportional to the Newtonian scalar
potential (analogous to the electrostatic potential) while cµν contains the Newtonian vector potential. So ϕ2 represents
the same kind of ghost as the time-like component of an abelian gauge field (which in the nonrelativistic limit gives
the electrostatic potential). Such ghosts are not really ghosts since they do not propagate: the corresponding degrees
of freedom are completely fixed in terms of sources by solving constraints from the equations of motion.

Thus the metric rescaling (5) in the theory described by (7) mixes a non-ghost matter scalar with a pseudo-ghost
mode of the metric. The full quadratic action of the rescaled theory will have kinetic terms mixing φ with ϕ2.
Presented with such an action ab initio, the proper way to extract its physical degrees of freedom is to gauge–fix
it and diagonalize the kinetic terms. The only way to diagonalize the kinetic terms is by shifting ϕ2 → ϕ2 − φ/M ,
effectively undoing the metric rescaling (5). The theory is then obviously free of ghosts.
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C. summary

The moral of this story is that there is an unambiguous procedure for determining the presence of ghosts in a theory
with gravity expanded around a given background solution. First, determine the local symmetries and gauge–fix them.
Second, diagonalize the full quadratic action. Third, extract the propagators of the physical degrees of freedom and
check for kinetic ghosts. It is also important to check for tachyons; in our dS4 example above, the longitudinal graviton
mode s(x) for m2 < 0 is an example of a tachyon which is not a ghost.

As we argued above, for scalars in flat space ghosts and tachyons exhaust the list of physically distinct pathologies
for weakly coupled theories. This is less obvious for gravity. However if we avoid regions of strong coupling and
abstain from integrating out degrees of freedom, there does not seem to be any reason to impose additional positivity
constraints. We will assume this for our analysis.

There is one other possible source of ambiguity. Because gravity is a highly nonlinear theory, one could imagine that
there are physical setups in which even the long–range solutions are intrinsically nonlinear. In such a case ghosts of
the linearized solutions are irrelevant, since the linearized solution is not itself an approximation to the real solution,
even very far away from any source. It has been argued that this may occur in the DGP model [22]. Note that
the claim that nonlinearities of gravity are important at cosmological scales is different from the claim that matter
nonlinearities are important at cosmological scales [23]; the latter has also been suggested as a replacement for dark
energy in explaining late time accelerated expansion [24]. At any rate we will not pursue this idea here, since we find
the linearized analysis of our models quite challenging enough!

III. WARPED MODELS WITH INDUCED GRAVITY

In this section we will review the main features of the two-brane models introduced in [8, 9], extending the results
to include the self–accelerating branch and the case of positively curved dS4 branes. The model is described by the
following action

S =

∫

d4x

∫ L−

0+

dy
√
−G

(

4M3R − 2Λ
)

+
∑

i

∫

y=yi

d4x
√

−g(i)(2M2
i R̃(i) − Vi) + 4M3

∮

∂M
K . (9)

This action represents a general warped gravity setup with codimension one branes, written in the interval picture.
We have only displayed one interval since physics on the second interval is fixed by a Z2 symmetry. In (9) M is the 5d
Planck scale, Λ = −24M3k2 is the bulk cosmological constant giving a bulk curvature k, the Mi are the coefficients
of brane-localized curvatures R̃(i), the Vi are brane tensions and K is the trace of extrinsic curvature. As described
in [8] we will use the straight gauge formalism to keep the brane locations fixed at y = 0+ and y = L−, even in the
presence of linearized fluctuations of the metric. There are no “brane-bending” modes in a straight gauge.

The background solution can be written as

ds2 = GMNdx
MdxN = gµνdx

µdxν + dy2, (10)

where y is restricted to the interval 0 < y < L and

gµν = a2(y)γµν , (11)

with γµν the metric of dS4 or AdS4 with constant curvature 12H2. The explicit form of the warp factor, a(y), the 4d
curvature constant H2, and the coordinate size of the extra dimension L, depend on the input brane parameters that
also determine how the AdS5 bulk is sliced. It is convenient to define the brane parameters in terms of dimensionless
quantities,

vi = kM2
i /M

3, wi = Vi/2kM
3 . (12)

The derived features of the model are determined by the following combinations of input parameters:

T±
i ≡ 1

vi

(

−1 ±
√

1 + viwi/6 + v2
i

)

. (13)

The choice of sign in (13) corresponds to the two independent branches (per brane) of the background solutions to
the equations of motion.
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A. slicing the AdS5 bulk

For a given set of five input parameters k, v0, w0, vL, wL, the first question is to determine the possible dS4 or
AdS4 slicings of the AdS5 bulk. This is set by whether the absolute value of Ti is larger or smaller than one. We show
in Figure 1 the regions in the (v, w) plane that correspond to |T | > 1 with dark shade and |T | < 1 in light shade. In
the unshaded regions T is complex. The left and right panels are for T+ and T−, respectively. The curved boundaries
correspond to the line w = −6(1 + v2)/v, the horizontal lines that separate the dark and light areas correspond to
w = ±12 (and v smaller or larger than ±1, depending on the panel) and finally the slanted line on the left panel
separating the two light shades (with T+ positive or negative) corresponds to w = −6v.

Simply put, in the dark shaded regions the branes are both dS4, in the light shaded regions they are both AdS4.
We parametrize the warp factor differently in each case:
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w

FIG. 1: Regions of the (v, w) plane corresponding to different background solutions and signs of T . The left panel is for the
T+ branch and the right panel is for the T− branch. The two (lighter) darker shades correspond to (A)dS4 branes. In the
unshaded regions the branes are neither AdS4 nor dS4.

• AdS5/AdS4: If |Ti| < 1, then the branes are AdS4. The warp factor reads,

a(y) =
cosh k(y − y0)

coshky0
, (14)

with the turning point y0 and L given by

T0 = tanh ky0, TL = tanh k(L− y0). (15)

Note that the requirement L > 0 implies

T0 + TL > 0. (16)

Finally the brane curvature is given by (H2 ≡ −H2 < 0)

H =
k

coshky0
. (17)

• AdS5/dS4: If |Ti| > 1, then the branes are dS4. The warp factor reads,

a(y) = − sinhk(y − y0)

sinh ky0
, (18)

with y0 and L given by

T0 = coth ky0, TL = cothk(L− y0). (19)

Note that if 0 < y0 < L, the warp factor vanishes at some point in the bulk. This is a true singularity and
therefore does not give rise to an acceptable model. Thus we have to require either y0 < 0 or y0 > L for the
case of dS4 branes. This requirement, together with L > 0, implies the conditions

T0 · TL < 0, T0 + TL < 0. (20)
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Finally the brane curvature is given by

H = ǫ̃0
k

sinh ky0
, (21)

where ǫ̃0 is the sign of T0.

B. standard branches and self–accelerating branches

For fixed input brane parameters, we have two different background solutions per brane, denoted by the sign choice
ǫi = ± in T ǫii (not to be confused with ǫ̃i, the sign of Ti itself). These two branches exhibit different physical features.
In the following, we will focus our attention to the brane at y = 0. The restriction L > 0, in addition to y0 < 0 or
L < y0 for dS4 branes, will then imply restrictions on the parameters of the brane located at y = L, such that not all
combinations of signs give sensible solutions.

The choice of branch for the brane at y = 0, i.e. the choice of ǫ0, corresponds to the standard and self–accelerating
branches for the cosmology of brane–induced gravity. In our notation, the standard branch corresponds to T+

0 whereas
the T−

0 branch is the self–accelerating one. The reason is the following. For fixed values of the brane parameters,
v0, w0, the brane curvature is larger for the self–accelerating branch than for the standard one1. This is obvious for
|w0| < 12, for which T+

0 corresponds to AdS4 solutions whereas T−
0 gives a dS4 brane (see Fig. 1). In the rest of the

parameter space, where we have either two AdS4 or two dS4 solutions, it is still true that

H2
[

T+
0 (v0, w0)

]

< H2
[

T−
0 (v0, w0)

]

. (22)

Furthermore, for positive v0, the Randall-Sundrum [26] tuning w0 = +12 results in a flat brane (independently of the
particular value of v0) for T+

0 and an inflating brane for T−
0 , thus the names standard and self–accelerating branches.

This is the exact warped analogue of the DGP tensionless brane. In the following we will loosely use the term branch
to denote the choice of sign in either brane. However, as we said, it is the brane at y = 0 that determines the standard
or self–accelerating nature of the solution, and therefore we will only apply these terms to the brane at y = 0.

C. properties of the spectrum

The properties of the physical spectrum were described for the AdS4 brane case in [8, 9], and can be easily extended
to the dS4 case. The spectrum is obtained by computing the action at the quadratic level for small perturbations
around the background metric,

GMN → GMN + hMN . (23)

This can be done in a straight gauge, for which the branes are straight and at fixed positions, y = 0+, L−, and
hµ4(x, y) = 0. A further gauge–fixing exhibits the radion,

h44(x, y) = F (y)ψ(x), (24)

where F (y) is a fixed but arbitrary function (part of the gauge choice) and ψ(x) is a four-dimensional scalar. The
components of hµν(x, y) can then be shown to have the following 4d physical degrees of freedom:

• massless modes: there is a graviton zero mode, Bµν(x) (2 degrees of freedom) and the above mentioned radion,
ψ(x).

hµν = a2(y)Bµν(x) + a2Y1(y)∇̃µ∇̃νψ + gµνY2(y)ψ . (25)

where the y dependence in the radion piece is given by

Y1(y) = χ
k

H2
(z − 1)2 − F , Y2(y) = χk(z − 1)2 +

a′

a
F . (26)

1 The name self–accelerating is actually a bit of abuse of language in these more general configurations as there are regions of parameter
space where the T−

0 branch gives an AdS4 background, which is never accelerating. Nevertheless even in this case there is a net positive
contribution to the brane curvature as compared with the standard branch.
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In this last equation we have defined the variable z

z =

{

tanh k(y − y0), H2 < 0,
cothk(y − y0), H2 > 0.

(27)

Note that we have Ti = θiz(yi), with −θ0 = θL = 1. χ, F and F are remnants of the residual gauge freedom
(related to F (y)) whose detailed form is not important for the discussion below.

• massive modes: there is a tower of massive gravitons (5 degrees of freedom each)

hµν =
∑

q

b(q)µν =
∑

q

Y(q)(y)B(q)
µν (x) , (28)

where q labels the mass, q = m2/H2, and

Y(q)(y) = P−2
(−1+

√
9−4q)/2

(z) − a
(q)
0

b
(q)
0

Q2
(−1+

√
9−4q)/2(z)

= P−2
(−1+

√
9−4q)/2

(z) − a
(q)
L

b
(q)
L

Q2
(−1+

√
9−4q)/2(z) , (29)

where the P ’s and Q’s are associated Legendre functions. The mass spectrum of modes is determined by solving
the determinant equation,

a0bL − aLb0 = 0 , (30)

with

ai = 2θi(1 − T 2
i )

d

dz
P−2
− 1

2
+ 1

2

√
9−4q

(z)
∣

∣

∣

z=θiTi

− {viq(T 2
i − 1) + 4Ti}P−2

− 1
2
+ 1

2

√
9−4q

(θiTi) , (31)

bi = 2θi(1 − T 2
i )

d

dz
Q2

− 1
2
+ 1

2

√
9−4q(z)

∣

∣

∣

z=θiTi

− {viq(T 2
i − 1) + 4Ti}Q2

− 1
2
+ 1

2

√
9−4q(θiTi) . (32)

All these equations are valid for both signs of the brane curvature, provided the right definition of z, the warp factor,
a(y), and the sign of the brane curvature H2 are used.2 Performing the integration over the extra dimension in the
quadratic terms for the different modes we obtain the corresponding kinetic coefficients (normalization constants).
For the massless modes:

C(0)
g =

T 2
0 − 1

k

∑

i

[

− kyi +
Ti + vi
T 2
i − 1

]

, (33)

Cψ = −3χ2H2

2k

∑

i

[

Ti +
vi + Ti
1 + viTi

]

, (34)

and for the massive modes:

C(q)
g = − k

H2

(

2

∫ TL

−T0

Y(q)2dz +
∑

i

[vi(1 − z2)Y(q)2]z=θTi

)

. (35)

If any of these coefficients becomes infinite, the corresponding mode is not normalizable and decouples from the
spectrum. If it vanishes, then we are in a region of strong coupling. If it becomes negative, then the mode is a ghost.

2 The price for this convenient notation is that q as defined here is −q as defined in [8].
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D. longitudinal graviton modes in dS4

As already mentioned, for dS4 the kinetic terms of some massive graviton modes have an intrinsic mass-dependent

kinetic coefficient already at the 4d level, in addition to the overall coefficient C(q)
g that they inherit from the Kaluza-

Klein (KK) decomposition. Thus in this case we need to compute this intrinsic coefficient before deciding if the mode
is a ghost.

To compute these coefficients, we need an explicit orthogonal decomposition of the five “helicities” of each massive

4d graviton B
(q)
µν (x). The appropriate orthogonal decomposition turns out to be:

B
(q)
00 (x) = f−3/2∇2

ks
(q)(x) ,

B
(q)
0i (x) = f1/2∇2

kv
(q)
i (x) + f−2∂0∂i(f

1/2s(q)(x)) , (36)

B
(q)
ij (x) = f1/2b

(q)
ij (x) + f−1∂0(f

3/2(∂iv
(q)
j (x) + ∂jv

(q)
i (x)))

+
1

2
f1/2Pij∇2

ks
(q)(x) + (δij −

3

2
Pij)∂0(∂0 +H)(f1/2s(q)(x)) ,

where

Pij ≡ δij −
∂i∂j
∂2
k

(37)

is a transverse projection operator in the flat 3d sense, and ∇2
i = ∂2

i /f(t)2 is the 3d Laplacian defined already in the

previous section. In (36) the b
(q)
ij (x) are traceless-transverse in the flat 3d sense (2 degrees of freedom), corresponding

to the helicity ±2 modes of the massive gravitons in the KK tower. The v
(q)
i (x) are transverse vectors in the flat 3d

sense (2 degrees of freedom), corresponding to the helicity ±1 modes of the massive gravitons in the KK tower. The
s(q)(x) are the longitudinal modes of the massive gravitons.

Substituting the ansatz (36), it is straightforward but tedious to show that the full 5d bulk equations of motion
reduce to a set of constraint equations which are automatically satisfied, together with the following dynamical 4d
equations of motion in the de Sitter background:

0 =

(

−∂2
0 + ∇2

i − (m2 − 9

4
H2)

)

b
(q)
ij (x) ,

0 = ∇2
j

(

−∂2
0 + ∇2

i − (m2 − 9

4
H2)

)

v
(q)
i (x) , (38)

0 = ∇2
j

(

−∂2
0 + ∇2

i − (m2 − 9

4
H2)

)

s(q)(x) .

Solutions to the equation of motion for the vectors v
(q)
i (x) and scalars s(q)(x) appear to be defined only up to an

arbitrary harmonic function annihilated by ∇2
i , but a residual 4d general coordinate invariance removes this ambiguity.

We can also substitute our orthogonal decomposition (36) into the effective 4d quadratic action, to read off the
intrinsic mass-dependent kinetic coefficients. Since the decomposition involves derivatives, this is really only mean-
ingful with the derivatives evaluated on-shell. The interesting case is for the longitudinal modes, where after another
tedious calculation we obtain the effective action shown in (4) for each longitudinal graviton mode in the KK tower.

Thus, even for values of q = m2/H2 such that C(q)
g > 0, the longitudinal graviton mode will be a ghost if 0 < q < 2.

IV. GHOSTS IN MODELS WITH INDUCED GRAVITY

In this section we will discuss the spectrum of our models in the search of regions that are free of ghost and tachyonic
instabilities. This is done by studying the solutions of the eigenvalue equation for the massive modes (30) as well as
the kinetic coefficients of these and the graviton zero mode and radion, (33-35). It is useful to separate the discussion
for AdS4 and dS4 branes, because of the different behavior of the longitudinal component of massive gravitons in the
latter. Thus, in an AdS4 space, we only need to look at the kinetic coefficients of the different modes, ghosts being
uniquely determined by the negative sign of their kinetic terms, whereas in dS4 space, the longitudinal component
of a massive graviton with positive overall kinetic coefficient but with mass 0 < m2 < 2H2 is a ghost, becoming a
(non-ghost) tachyon for m2 < 0.
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A. negative curvature: AdS4 branes

The presence of ghosts for AdS4 branes was discussed, for the standard branch, in [9]. In this section we will review
the results and generalize them to the self–accelerating branch. Let us start discussing the simpler case of the graviton
zero mode. Recalling the definition of Ti in the AdS4 background (15), we can write the kinetic coefficient for the
graviton zero mode as

C(0)AdS4

g =
1 − T 2

0

k

∑

i

[

tanh−1 Ti +
Ti + vi
1 − T 2

i

]

. (39)

For AdS4 the global term outside the sum is positive so we only need to look at the sign of the sum. Let us define
each term in the sum as

C̄(0),i
g ≡ tanh−1 Ti +

vi + Ti
1 − T 2

i

. (40)

C̄(0),i
g is a growing function of wi, for fixed vi. Let us now consider its value at the boundaries of the AdS4 region

in the (v, w) plane (light shaded areas in Fig. 1). In the limit vi → ±∞ along the curve wi = −6(1 + v2
i )/vi we get

C(0),i
g = ±∞. As we move along that curve towards the points vi → ±1 (and wi = ∓12, respectively), it goes to ∓∞.

This is independent of which branch we have chosen for the branes. The rest of the boundaries, however, depend on
whether we have T+

i or T−
i (see Fig. 1). For T+

i , C̄(0),i stays +∞ for wi = +12 and vi > −1 and −∞ for wi = −12
and vi < 1 whereas for T−

i it is −∞ for wi = +12, vi < −1 and +∞ for wi = −12 and vi > 1. In summary, for any
branch it goes all the way to −∞ for negative vi and all the way to +∞ for positive vi. Furthermore it can be made
as negative (positive) as one wants for sufficiently large negative (positive) vi. Thus, it is clear that independent of

the value of C̄(0),L
g (provided it remains finite) there will always be a curve splitting the (v0, w0) plane in two parts,

such that to the left of the curve the graviton zero mode is a ghost and to the right of the curve it is not. The case of
the radion is more complicated so rather than giving analytic expressions describing the different behaviors, we prefer
to show, directly in the figures, the relevant cases for the different choices of branches.

There is also an extra source of instability in these models, namely the possible existence of tachyons in the
spectrum. A thorough study of tachyons for the case of AdS4 branes in the standard branch was done in [9], and the
techniques to study them apply mostly unchanged to the self–accelerating branch. Recall that in our notation, due to
H2(AdS4) < 0, tachyonic solutions are characterized by q > 0. It proves useful to study the behavior of the quantity

D ≡ a0bL − b0aL
q(1 − T 2

0 )(1 − T 2
L)
, (41)

that has the same massive solutions as our original eigenvalue equation, but we have explicitly removed the zero mode
solution, q = 0. The behavior of this function at q = 0 and q → ∞ is, respectively [9],

D(q = 0) = 2
k

T 2
0 − 1

C(0)
g , (42)

and

sign
[

D(q → ∞)] = sign
[

v0vL(cos−1 T0 + cos−1 TL − π)]. (43)

Thus, if the signs of both are different, there exists an odd number (therefore at least one) of solutions with positive
q, i.e. tachyons. If the signs of both are the same, then there is either no tachyon or an even number of them (that
last distinction can be resolved numerically). The condition L > 0 gives, for AdS4 branes, T0 + TL > 0 which in turn
implies

cos−1 T0 + cos−1 TL − π < 0. (44)

It is then clear that in order to have an even number of tachyons (usually zero), we need

sign v0vL = sign C(0)
g > 0, (45)

where the last inequality is for the phenomenologically relevant region in which the graviton zero mode is not a ghost.
In Fig. 2 we show the case of the (T+

0 , T
+
L ) branch for two possible behaviors, depending on which choice of

parameters we make for the brane at y = L. We represent three different shades in the figure, the light one is the
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FIG. 2: Ghost and tachyon–free region for the (T+
0 , T+

L ) branch. The different shades correspond to the following regions:
L > 0 (light), Cψ > 0 (dark) and the intersection of both (intermediate). The hatched area corresponds to the region where
Cψ > 0, L > 0 and there are not tachyons in the spectrum. The region to the right of the thick solid line corresponds to

C
(0)
g > 0. Thus, the hatched area to the right of that line is the ghost and tachyon–free region for this configuration. In the left

panel vL = 2.5, wL = 7 whereas in the right panel we use vL = 2.5 and wL = −13.

region of parameter space for which L > 0, the dark one is the region in which the radion is not a ghost and the
intermediate shade is the region for which both conditions are satisfied. That latter area is hatched if no tachyons
are present in the spectrum. In these examples we have vL = 2.5 > 0 and therefore the condition for no tachyons in

the spectrum demands v0 > 0. Finally, the thick solid line represents the points for which C(0)
g = 0. Therefore the

hatched region to the right of the solid line is ghost and tachyon free. (It can be checked numerically that the massive
gravitons have positive kinetic coefficients in that region.) Note that there are also regions of parameter space with
positive and small v0 that are not allowed.

In Fig. 3, we consider the case of the (T+
0 , T

−
L ) branch. In this case there is a large region where the radion is not a

ghost for both values of the sign of v0, provided wL > 12 (considering values of wL < −12 yields a very small region
for which the radion is not a ghost). In the figure, we have chosen vL = −4 and wL = 15. The shades have the same
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FIG. 3: Ghost-free region for the (T+
0 , T−

L ) branch, with wL > 12. We have taken vL = −4 and wL = 15. The region to the

right of the thick solid line corresponds to C
(0)
g > 0. The shades correspond to the following regions: L > 0 (light), Cψ > 0

(dark) and the intersection of both (intermediate). The ghost–free region has tachyons in the spectrum.

meaning as in the previous figure. From Fig. 1, it follows that wL > 12 implies vL < 0 for T−
L , thus the region to the

right of the graviton zero mode line with v0 > 0 has an odd number of tachyons. A numerical analysis shows that the
small region to the right of the graviton zero mode line but with v0 < 0 has two tachyons. Thus, this solution does
not have any region that is ghost and tachyon free (no hatched area).

Let us consider now the cases of self–accelerating branches: (T−
0 , T

−
L ) and (T−

0 , T
+
L ). In Fig. 4 we show the case

(T−
0 , T

−
L ). There is a large ghost–free region in the case that wL > 12 whereas it shrinks to almost nothing if

wL < −12. From Fig. 1, it follows that wL > 12 implies vL < 0 (left panel in the Fig. 4) and wL < −12 implies
vL > 0 (right panel). The ghost-free areas have, respectively, v0 > 0 and v0 < 0 and therefore at least one tachyon.
Thus in this branch there are no ghost and tachyon-free regions. In the (T−

0 , T
+
L ) branch, there is a large ghost–free

region with w0 > 12 (and therefore v0 < −1), quite independent of the values of vL and wL. This ghost–free region,
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FIG. 4: Ghost-free region for both the (T−

0 , T−

L ) branch. The shades correspond to the following regions: L > 0 (light), Cψ > 0

(dark) and the intersection of both (intermediate). The region to the right of the thick black line corresponds to C
(0)
g > 0. In

the left panel we have vL = −4, wL = 19 whereas for the right panel vL = 4 and wL = −15.

however, always has tachyons and therefore there are no ghost and tachyon–free regions in this case, either. We do
not present a figure for this case since it is quite similar to the left upper region of the left panel in Fig. 4.

In summary, in the AdS4 case, only the (T+
0 , T

+
L ) branch with v0 > 0 and vL > 0 has ghost and tachyon–free

solutions.

B. positive curvature: dS4 branes

We now consider the phenomenologically more relevant case of inflating branes. This corresponds to a choice of
brane parameters such that |Ti| > 1. Recall that the absence of a true singularity in the bulk forces us to choose
opposite signs for T0 and TL. This leaves eight different regions of parameter space: four choices of combinations
T±

0 , T±
L times two choices of the sign of T0. We have emphasized above the possible existence of a new source of

ghosts for inflating branes, the longitudinal component of a massive graviton with mass 0 < m2 < 2H2. There is a
deep connection, already present in the DGP model, between the radion and the massive graviton ghosts, that can
be characterized by the following identity,

D(q = 2) = sign(T0)
8

3
(1 + v0T0)(1 + vLTL)C̄ψ , (46)

where we defined D in (41) and C̄ψ ≡ kCψ/χ2H2 has the same sign as Cψ for dS4. This identity states that at the
boundary between the regions where the radion is or is not a kinetic ghost, there is always a massive graviton with
m2 = 2H2, thus also at the boundary of having a ghost longitudinal component. In the DGP model, the dependence
on the brane parameters is such that, as we cross from the region where the radion is a ghost to the region where it is
not, a massive graviton goes from mass squared larger than 2H2 to mass squared smaller than that, so that there is
always a ghost in the spectrum. In our case, the richer parameter space allows for different behaviors. Let us denote
by s ≡ (v∗i , T

∗
i ) a point for which C̄ψ(s) = D(q = 2) = 0. The variation of the solution of the equation

D(q) = 0, (47)

around s for fixed v leads to (see Appendix B for details)

δq

δT0

∣

∣

∣

∣

s

=
8

3

1

B(v0, w0, vL, wL)

∂C̄ψ
∂T0

∣

∣

∣

∣

T∗

0

, (48)

where B(v0, w0, vL, wL) is a function that is negative in the region of parameter space for which L > 0 and positive

otherwise. Thus, if s is in the physical region with L > 0, the slopes of the solution of the massive graviton and the
kinetic coefficient of the radion have opposite signs, which means that near the boundary defined by C̄ψ = 0, either

the radion or a massive graviton is always a ghost. If, on the other hand the point s lies outside the physical region
(L < 0) there is potentially a dramatic effect on the physical spectrum. In this case, contrary to what happens in
the DGP model, there will be regions where neither the radion, nor a massive graviton is a ghost. We can study the



12

presence of massive gravitons with q < 2 in a way similar to the study of tachyons in the AdS4 case. The behavior of
D(q) in the limit q → −∞ reads (see Appendix B)

sign[D(q → −∞)] = sign[T0v0vL]. (49)

Thus, the sign of the determinant equation at minus infinity changes when either v0 or vL goes through zero. Using
(46) and recalling the definition of Ti we also have

sign[D(q = 2)] = sign[T0]ǫ0ǫL, (for C̄ψ > 0), (50)

where ǫ0,L are the sign choices (branches) for T
ǫ0,L

0,L . A comparison of the sign of the determinant at both points shows

that, excluding the graviton zero mode, there is an even (possibly zero) number of modes with q < 2 (i.e. either
ghosts or tachyons) if sign[v0vL] = ǫ0ǫL and an odd number of them (thus at least one) otherwise. In order to classify
the different behaviors, it helps recalling that T−

i has the opposite sign to vi (see Fig. 1, right panel), whereas T+
i has

the same sign as vi everywhere except in a small wedge, where it has the opposite sign (Fig. 1, left panel).
Let us start our discussion with the cases for which the line C̄ψ = 0 is always outside the physical region. As

explained in Appendix B, this occurs in the (T−
0 , T

+
L ) branch for positive T0 and the (T+

0 , T
−
L ) branch with T0

negative or with T0 positive and (TL − 1)(2 − vL + vLTL)/(1 + vLTL) > −4. In the latter case the radion is always a
ghost whereas in the former two it is never a ghost in the physical region of parameter space. These are potentially
very interesting cases, since, contrary to what happens in the DGP model, they include a self–accelerating solution
with regions where neither the radion nor the longitudinal component of a massive graviton is a ghost. In this case
we have ǫ0ǫL = −1 and therefore the regions that satisfy C̄ψ > 0 with v0vL > 0 have an odd number of modes with
q < 2. This leaves the wedge of the brane in the (+) branch as the only possible ghost-free region. The massive
graviton/radion system is actually ghost free in these regions. Unfortunately, having one of the two vi negative makes
the graviton zero mode a ghost. An example of this case is shown in Fig. 5, where we have chosen the (T−

0 , T
+
L )
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FIG. 5: Ghost and tachyon-free region for the (T−

0 , T+
L ) branch. We have chosen vL = 0.05 and wL = −13. The shades

correspond to the following regions: Cψ > 0 (dark) and the intersection of Cψ > 0 with L > 0 and y0 such that there are no

singularities in the background (light). The region to the right of the thick black line corresponds to C
(0)
g > 0. The hatched

region corresponds to the physical region where the radion is not a ghost and there are no modes with q < 2. In this case the
only hatched region is to the left of the thick solid line and therefore there is no ghost and tachyon free region for this branch.

branch with vL = 0.05 and wL = −13 (thus the brane in the (+) branch living in the small wedge). The shaded region
of the figure represents the area where the radion is not a ghost, outside the physical region (dark shade) and inside
the physcal region (light shade), i.e. Cψ > 0, L > 0 and y0 outside the interval [0, L]. The curved lower boundary of
the dark region represents the line Cψ = 0, which is outside the physical region and therefore, above it, neither the
radion nor the massive graviton is a ghost. The hatched area is the physical region in which the radion is not a ghost
and all massive gravitons have q > 2. This region is to the left of the thick solid line and therefore the graviton zero
mode is a ghost.

Let us now consider the case for which the line C̄ψ = 0 can be inside the physical region so that, in the neighborhood

of such line, either the radion or the longitudinal component of a massive graviton is a ghost. This happens for the
(T−

0 , T
−
L ), (T+

0 , T
+
L ) branches and for the (T−

0 , T
+
L ) branch for negative T0 or the (T+

0 , T
−
L ) branch for positive T0,

provided (TL − 1)(2 − vL + vLTL)/(1 + vLTL) < −4. The condition T0 · TL < 0 immediately tells us that there is an
odd number of modes with q < 2 for the (T−

0 , T
−
L ) branch, since v0 · vL < 0 while ǫ0ǫL = +1. Similarly, the (T+

0 , T
+
L )

branch has an odd number of modes with q < 2 unless one (and only one) of the two branes lives in such small wedges.
Numerical analysis then shows that the region with both v0, vL > 0 is ghost and tachyon–free whereas there are two
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FIG. 6: Ghost and tachyon-free region for the (T+
0 , T+

L ) branch. We have chosen vL = 0.05 and wL = −12.5. The right panel
is just a zoomed in view of the same plot. The shades correspond to the following regions: L > 0 and y0 such that there are no
singularities in the background (light), Cψ > 0 (dark) and the intersection of both (intermediate). The region to the right of

the thick black line corresponds to C
(0)
g > 0. The hatched region corresponds to the physical region where the radion is not a

ghost and there are no modes with q < 2. Thus the hatched region to the right of the thick solid line is the ghost and tachyon
free region.

modes with q < 2 if they are both negative. An example of this is shown in Fig. 6, where we have chosen vL = 0.05
and wL = −12.5 (thus the L brane in the small wedge). The color coding is the same as in the previous figure. This
time, there is a hatched area to the right of the thick solid line (with v0 > 0) that is ghost and tachyon–free. In
the right panel we show a closer view of the region around v0 = 0 that shows an area with intermediate shade to
the right of the thick solid line for which neither the radion nor the graviton zero mode are ghosts but there is one
mode with q < 2 (intermediate shade unhatched region with v0 < 0). For the (T+

0 , T
−
L ) and (T−

0 , T
+
L ) branches we

have ǫ0ǫL = −1, thus again only the wedge of the brane in the (+) branch might give ghost free solutions. However,
numerical analysis always shows two modes with q < 2 in the region where the radion is not a ghost.

Our discussion so far has assumed a finite L. The different properties we have described naturally generalize to
an infinite extra dimension by taking the limit L → ∞. Note however that, in the dS4 case, if y0 > 0, there is a
different infinte extra dimension limit we can take, namely L → y0. This corresponds to an infinite extra dimension
in conformal coordinates, for which

ds2 = â2(x)(γµνdx
µdxν + dx2), (51)

as shown in Appendix A. The behavior is therefore different depending on the sign of y0. If it is negative, (i.e. if
T0 < 0), then we can take the L → ∞ limit by making T±

L = 1. This in turn is obtained for wL = 12, with vL ≥ −1

if we are in the (T+
L ) branch and vL ≤ −1 in the (T−

L ) branch. Now (33) shows in this case that the graviton zero
mode is non-normalizable and decouples from the spectrum whereas the radion and massive gravitons remain in the
spectrum. If y0 is positive, the limit L → y0 is obtained by taking wL → −∞, that makes T+

L → −∞ or vL → 0,

making T−
L → −∞. In that case (34) shows that it is the radion which is non-normalizable while the graviton zero

mode and the massive modes remain in the spectrum. Apart from the fact that either the graviton zero mode or the
radion decouple, most of the features of the spectrum generalize to the infinite extra dimension case. One interesting
example is the (T+

0 , T
−
L ) branch with negative T0. In that case we had regions where neither the radion nor any of

the massive gravitons was a ghost or a tachyon but the graviton zero mode was always a ghost in such regions. Since
T0 < 0, however, we can take the L→ ∞ limit and the graviton zero mode decouples. Thus, this is another example
that is tachyon and ghost–free. Note that this is a standard solution but contrary to the previously found ones, it has
vL < 0.

To sum up, we have found that only the (T+
0 , T

+
L ) branch with both v0 and vL positive is free of ghosts and tachyons

(Fig. 6, hatched area) in the case of a finite extra dimension. For an infinite extra dimension, there are also tachyon
and ghost–free regions with vL < 0 in the (T+

0 , T
−
L ) branch. We have seen examples of self–accelerating solutions,

(T−
0 , T

+
L ) with T0 positive for instance, where neither the radion nor any massive graviton is a ghost but the massless

graviton is (Fig. 5, hatched area). We have seen examples of standard solutions, (T+
0 , T

+
L ) for instance, where there

is a ghost in the massive graviton/radion system (Fig. 6, light unhatched area). From these examples we conclude
that the DGP ghost (the ghost present in the self–accelerating branch of the DGP model) is not necessarily correlated
with the self–accelerating branch in our more general warped backgrounds.
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V. CONCLUSIONS

The accelerating expansion of the Universe is one of the most exciting mysteries in modern science. The existence
of self–accelerating solutions in braneworld gravity models suggests the possibility that an extra dimension, rather
than dark energy, may explain this phenomenon. Unfortunately the original DGP model has been criticized for the
presence of ghosts in the weakly-coupled regime of the self–accelerating solution. Generically either the radion or the
longitudinal component of a massive graviton is a ghost.

Given the obvious importance of self–accelerating solutions, we have investigated the presence of ghosts in a gen-
eralization of the DGP model. Our model uses a warped AdS5 bulk and two branes with arbitrary tensions and
brane-localized curvature terms. Depending on functions of the input brane parameters which we have denoted as
T0, TL, the AdS5 bulk is sliced into sections of negative, positive, or zero curvature, giving rise to AdS4, dS4, or M4

branes, respectively. For each value of the input brane parameters, there are in general two different static back-
grounds per brane; the four resulting branches are denoted by (T±

0 ,T±
L ). In the dS4 or flat case, the (T−

0 , T
+
L ) and

(T−
0 , T

−
L ) branches provide self–accelerating solutions.

We have performed a comprehensive analysis of the spectrum for both AdS4 and dS4 branes and every branch, with
special emphasis on the presence of ghosts. The results can be summarized as follows. For the AdS4 brane on the
(T+

0 , T
+
L ) branch, the spectrum is free of ghosts and tachyons provided both localized curvature terms are positive;

on all other AdS4 branches, for all values of the input parameters, the spectrum has either ghosts or tachyons. For
dS4 branes on the (T+

0 , T
+
L ) branch the spectrum is also free of ghosts and tachyons provided both localized curvature

terms are positive. On all other dS4 branches, with finite L, for all values of the input parameters, the spectrum has
either ghosts or tachyons. This feature of our results is discouraging.

We find, however, solutions that depart from the general behavior of the DGP model in interesting ways. We have
self–accelerating solutions which are free of DGP ghosts, i.e., neither the radion nor any massive graviton are ghosts;
in these cases the graviton zero mode turned out to be a ghost. In some of these solutions, one can take the second
brane to infinity so that the (ghost) graviton zero mode decouples, thus obtaining another example of ghost and
tachyon–free model. We also have solutions which are not self–accelerating, but nevertheless have a DGP ghost.

Although there is no self–accelerating solution that is totally ghost-free, the fact that the ghost present in the
DGP model is not correlated with the self–accelerating branch makes these models an excellent laboratory to study
self–acceleration. One can hope that simple modifications of these models could get rid of ghosts altogether. For
example, in the case of a flat bulk it was recently suggested that adding a Gauss-Bonnet term to the bulk action
will exorcise the DGP ghost [25]. Since in some cases the ghost is a radion, one could also attempt to modify the
bulk scalar dynamics, in the style of Goldberger and Wise [27] (see also [28]). In this context, it is important to
also consider the effects of brane matter, which requires a fully time-dependent analysis rather than the quasi-static
approach taken here. Another promising direction is the study of exact solutions, using the methods developed in
[29].
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APPENDIX A: COORDINATE SYSTEMS

In this Appendix we will give the AdS5/(A)dS4 background solutions in a different coordinate system that has
been used in other studies of brane induced gravity models and is also the preferred one in cosmological studies. This
coordinate system is conformal:

ds2 = â2(x)(γµνdx
µdxν + dx2), (A1)

where

a2(y) = â2(x), dy2 = â2(x)dx2. (A2)

The coordinate change is of course different for the dS4 and AdS4 cases.
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• AdS4 case:

â(x) =
H

k

1

sinH(x− x0)
, (A3)

with

x− x0 = − i

2H
ln

(

sinh k(y − y0) − i

sinh k(y − y0) + i

)

, (A4)

and

y = y0 −
1

k
sinh−1

[

cotH(x− x0)
]

. (A5)

Requiring that x = 0 for y = 0 we obtain

x0 = − i

2H
ln

(

sinh ky0 − i

sinh ky0 + i

)

. (A6)

In particular it is easy to check that

y − y0 → 0± ⇒ x− x0 → ∓π/(2H), (A7)

y → ∞ ⇒ x− x0 → 0−. (A8)

• dS4 case:

â(x) =
H

k

1

sinhH(x− x0)
, (A9)

with

x− x0 = − 1

2H
ln

(

coshk(y − y0) − 1

coshk(y − y0) + 1

)

, (A10)

and

y = y0 −
ǫ̃0
k

cosh−1
[

cothH(x− x0)
]

, (A11)

where ǫ̃0 = sign T0. Again, requiring that x = 0 for y = 0 we obtain

x0 =
1

2H
ln

(

coshky0 − 1

coshky0 + 1

)

. (A12)

In this case we have

y → y0 ⇒ x→ ∞, (A13)

y → ∞ ⇒ x− x0 → 0. (A14)

APPENDIX B: DETAILED CALCULATIONS FOR dS4 BRANES

We reproduce in this appendix the detailed calculations that lead to the determination of ghosts and tachyons for
dS4 branes. For convenience, we will use (v, T ) as independent variables. The first step is to characterize the region
of parameter space satisfying C̄ψ = 0. Let us fix the value of (vL, TL), and solve C̄ψ(v∗0 , T

∗
0 ) = 0 for v∗0 :

v∗0 =
−2T ∗

0 − 2 − χL
(T ∗

0 + 1)2 + χLT ∗
0

, (B1)

where

χL =
(TL − 1)(2 − vL + vLTL)

1 + vLTL
. (B2)
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In the (v0, T0)–plane, the allowed regions are bounded by T0 = ±1 or T0 = −TL, and T0 = −1/v0. For example, the
allowed region for the (T−

0 , T
−
L ) branch with T−

0 < 0 lies in the fourth quadrant with T0 < −TL and T0 < −1/v0. In
this case, in order for the C̄ψ = 0 line to fit in the allowed region, it should be satisfied that v∗0 of (B1) be larger than
−1/T ∗

0 . This inequality can change sign for some of the branches.
Therefore, to see whether C̄ψ = 0 line lies inside or outside of the allowed region, we need to check the sign of

v∗0 +
1

T ∗
0

=
1 − T ∗

0
2

T ∗
0

1

T ∗
0

2 + (2 + χL)T ∗
0 + 1

, (B3)

whose only nontrivial part is

S(T0) = T ∗
0

2 + (2 + χL)T ∗
0 + 1 . (B4)

Since T0 < −TL < −1 or 1 < T0 < −TL, from the elementary analysis on quadratic functions it would suffice to
determine the signs of

S(−TL) =
1 − T 2

L

1 + vLTL
, S(1) = 4 + χL , (B5)

and the location of the symmetry axis, l = −(2 + χL)/2, relative to −TL or 1. Note that the sign of S(−TL) is the
opposite of ǫL. The result is summarized in the following table:

S(−TL) S(1) l sign[(B3)] allowed region location of Cψ = 0
(T+

0 , T
+
L ) − + → − as T0 increases v0 + 1/T0 < 0 inside or outside

T0 < 0 (T+
0 , T

−
L ) + > −TL + v0 + 1/T0 < 0 outside

(T−
0 , T

+
L ) − + → − as T0 increases v0 + 1/T0 > 0 inside or outside

(T−
0 , T

−
L ) + > −TL + v0 + 1/T0 > 0 inside

(T+
0 , T

+
L ) − − + v0 + 1/T0 > 0 inside

(T+
0 , T

−
L ) + + < 1 − v0 + 1/T0 > 0 outside

T0 > 0 or − + → − as T0 increases v0 + 1/T0 > 0 inside or outside
(T−

0 , T
+
L ) − − + v0 + 1/T0 < 0 outside

(T−
0 , T

−
L ) + + < 1 − v0 + 1/T0 < 0 inside

or − + → − as T0 increases v0 + 1/T0 < 0 inside or outside

A blank in the tables denotes that the corresponding information does not affect the result. + → − as T0 increases
means that both signs are possible, depending on the parameters. Comparing the sign of (B3) with the allowed region
for each case (columns 4 and 5 in the table) we obtain the classification of the last column in the table.

Let us assume the line of C̄ψ = 0 is inside the allowed region, with (v∗0 , T
∗
0 ) representing the locus. The treatment

of the solution is different depending on the sign of T0. If T0 is negative, so that z is positive, we get, from (30,34),

D(q = 2) = 4(T0 + 1)(2 + v0 + v0T0)(1 + vLTL) + 4(TL − 1)(2 − vL + vLTL)(1 + v0T0)

= −8

3
(1 + v0T0)(1 + vLTL)C̄ψ , (B6)

and therefore if C̄ψ = 0 has a solution, there is a KK graviton mode with q = 2. Let us now consider how C̄ψ and
D change as we vary T0 around the solution: for given L-parameters, when s = (q = 2, T0 = T ∗

0 ) solves D = 0, at
(q = 2 + δq, T0 = T ∗

0 + δT0) which is another solution in a small neighborhood of s, we have

0 = D(T ∗
0 + δT0, 2 + δq) = D(s) +

∂D

∂T0

∣

∣

∣

s
δT0 +

∂D

∂q

∣

∣

∣

s
δq

= 0 − 8

3
(1 + v0T0)(1 + vLTL)

∂C̄ψ
∂T0

∣

∣

∣

T∗

0

δT0 +
∂D

∂q

∣

∣

∣

s
δq , (B7)

i.e.,

δq

δT0
=

8

3

(1 + v0T0)(1 + vLTL)

∂D/∂q|s
∂C̄ψ
∂T0

∣

∣

∣

T∗

0

. (B8)
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To evaluate ∂D/∂q, we use [31] 3.7 (6), [30] 4.224.9 and [31] 3.6.1 (8) to get

∂νP
0
ν (z)|ν=0 = ln

z + 1

2
, (B9)

∂νP
−1
ν (z)|ν=0 = −

√

z − 1

z + 1
+

√

z + 1

z − 1
ln
z + 1

2
, (B10)

∂νP
−2
ν (z)|ν=0 = − 3z + 1

4(z + 1)
+

z + 1

2(z − 1)
ln
z + 1

2
. (B11)

Also using [30] 8.712, 2.727.2 and [31] 3.6.1 (5) we obtain

∂νQ
0
ν(z)|ν=0 =

1

2
ln 2 ln

z + 1

z − 1
+

1

4
ln(z2 − 1) ln

z − 1

z + 1

−1

2
Li2

( 2

1 + z

)

+
1

2
Li2

( 2

1 − z

)

, (B12)

∂νQ
1
ν(z)|ν=0 =

1

2
√
z2 − 1

(

z ln
z + 1

z − 1
+ ln

z2 − 1

4

)

, (B13)

∂νQ
2
ν(z)|ν=0 = − 1

2(z2 − 1)

{

(z2 + 1) ln
z + 1

z − 1
+ 2z ln

z2 − 1

4

}

, (B14)

where Li2(z) is the dilogarithm function, defined as

Li2(z) =

∞
∑

k=1

zk

k2
=

∫ 0

z

ln(1 − t)

t
dt . (B15)

Then, ∂D/∂q|q=2 becomes

∂D

∂q

∣

∣

∣

q=2
= 4(1 + vLTL)

{

2(T0 + 1)(1 + v0T0) + (2 − v0 + v0T0)(−T0 + 1) ln
−T0 + 1

2

}

+(2 − vL + vLTL)(TL − 1)
{

(v0 + 2T0 + v0T
2
0 ) ln

−T0 − 1

−T0 + 1
+ 2(1 + v0T0)

(

1 + ln
T 2

0 − 1

4

)}

+4(1 + v0T0)
{

2(TL − 1)(1 + vLTL) − (2 + vL + vLTL)(TL + 1) ln
TL + 1

2

}

−(2 + v0 + v0T0)(T0 + 1)
{

(vL + 2TL + vLT
2
L) ln

TL − 1

TL + 1
− 2(1 + vLTL)

(

1 + ln
T 2
L − 1

4

)}

.

(B16)

At T0 = T ∗
0 , (B6)= 0 simplifies the above into

∂D

∂q

∣

∣

∣

s
=

(T ∗
0

2 − 1)(T 2
L − 1)

(TL − 1)2 − χLTL
·
8(T ∗

0 + TL) − χ2
L ln

−T∗

0 −1
TL−1 + (χL + 4)2 ln

−T∗

0 +1
TL+1

(T ∗
0 + 1)2 + χLT ∗

0

, (B17)

and (B8) becomes

δq

δT0

∣

∣

∣

s
=

8

3B(T0;TL, χL)

∂C̄ψ
∂T0

∣

∣

∣

T∗

0

, (B18)

where

B = 8(T ∗
0 + TL) − χ2

L ln
−T ∗

0 − 1

TL − 1
+ (χL + 4)2 ln

−T ∗
0 + 1

TL + 1
. (B19)

B is a growing function of T0,

dB

dT0
= 2

(2 + 2T0 + χL)2

T 2
0 − 1

> 0 . (B20)

For L > 0 we have T0 < −TL and therefore B is bounded above by B(−TL) = 0, or in other words, it is always
negative. If L < 0, on the other hand, we have T0 > −TL and therefore B is bounded below by 0, so it is positive.
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Thus, when C̄ψ = 0 has a solution in the physical region (with L > 0), the slope of the mass of the first KK graviton
mode when it passes q = 2 and that of C̄ψ when it crosses zero have opposite signs, and therefore when the first KK
graviton mode is heavier than 2H2 the radion is a ghost and vice versa. If C̄ψ = 0 has a solution outside the physical
region (where L < 0), then both the radion and the longitudinal component of a massive graviton are ghosts at one
side of the line (in the (v0, w0) plane) and neither of them is at the other side.

If T0 is positive, then z is negative in the physical region and we have to use the wave functions evaluated at −z
for the massive gravitons. This introduces some extra minus signs, so that now we have

D(q = 2) =
8

3
(1 + v0T0)(1 + vLTL)C̄ψ , (B21)

δq

δT0

∣

∣

∣

s
= −8

3

(1 + v0T0)(1 + vLTL)

∂D/∂q|s
∂C̄ψ
∂T0

∣

∣

∣

T∗

0

, (B22)

∂D

∂q

∣

∣

∣

s
= − (T ∗

0
2 − 1)(T 2

L − 1)

(TL − 1)2 − χLTL
·
8(T ∗

0 + TL) − χ2
L ln

T∗

0 +1
−TL+1 + (χL + 4)2 ln

T∗

0 −1
−TL−1

(T ∗
0 + 1)2 + χLT ∗

0

. (B23)

These extra minuses get cancelled among themselves, and we still get the same final result, (B18-B19). Thus inde-
pendently of the sign of T0, it is always true that, near the locus of points satisfying C̄ψ = 0, either the radion or
the longitudinal component of a massive graviton with m2 < 2H2 is a ghost if parameters are chosen from inside the
physical region and neither of them is to one side of the region C̄ψ = 0 if that region has L < 0.

Let us now compute the limit D(q → −∞), which is equivalent to ν → ∞, where ν is the index of the corresponding
Legendre function. The calculation is again different for the two signs of T0. We start considering the case of negative
T0, so that z is positive. Using 8.723 1 from [30] we find

P−2
ν→∞(coshα) ∼ 1√

π

e(ν+1)α

√
e2α − 1

ν−5/2, (B24)

where we have defined z ≡ coshα. Then

(1 − z2)
d

dz
P−2
ν→∞(coshα) ∼ − 1

2
√
π

√

e2α − 1eναν−3/2. (B25)

Using now 8.723 2 and 8.732 1 from [30], respectively, we get

Q2
ν→∞(coshα) ∼

√
π

e−να√
e2α − 1

ν3/2, (B26)

(1 − z2)
d

dz
Q2
ν→∞(coshα) ∼

√
π

2

√

e2α − 1e−(ν+1)αν5/2. (B27)

These expressions allow us to compute the limit of the different coefficients, that turns out to be identical for both
branes

ai(q → −∞) ∼ vi(T
2
i − 1)√
π

e(ν−1)αi

√
e2αi − 1

ν−1/2, (B28)

bi(q → −∞) ∼
√
πvi(T

2
i − 1)

e−ναi

√
e2αi − 1

ν7/2. (B29)

We can now compute the limit of the full determinant,

a0bL − aLb0 ∼ v0vL
T 2

0 − 1√
e2α0 − 1

T 2
L − 1√
e2αL − 1

ν3
[

e−α0eν(α0−αL) − e−αLeν(αL−α0)
]

∼ v0vL
T 2

0 − 1√
e2α0 − 1

T 2
L − 1√
e2αL − 1

ν3e−α0eν(α0−αL), (B30)

where we have used that, in the physical region with negative T0, we have 0 < TL < −T0 ⇒ coshαL < coshα0 ⇒
αL < α0. Thus,

sign
[

D(q → −∞)
]

= −sign
[

v0vL
]

= sign
[

T0v0vL
]

. (B31)
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We can now check what happens in the case that T0 > 0 so that z < 0. As we said above, the valid solution is then
the corresponding associated Legendre functions evaluated at −z. The expression of the ai and bi is then identical to
(30) with the change θi → −θi, i.e.

c
(T0>0)
0 (T0) = c

(T0<0)
L (T0), c

(T0>0)
L (TL) = c

(T0<0)
0 (TL), (B32)

where ci stands for any of ai or bi. Thus, noting that now 0 < T0 < −TL ⇒ coshα0 < coshαL ⇒ α0 < αL in the
physical region, we get

a0bL − aLb0

∣

∣

∣

T0>0
∼ v0vL

T 2
0 − 1√
e2α0 − 1

T 2
L − 1√
e2αL − 1

ν3
[

e−α0eν(α0−αL) − e−αLeν(αL−α0)
]

∼ −v0vL
T 2

0 − 1√
e2α0 − 1

T 2
L − 1√
e2αL − 1

ν3e−αLeν(αL−α0), (B33)

and therefore

sign
[

D(T0>0)(q → −∞)
]

= sign
[

v0vL
]

= sign
[

T0v0vL
]

. (B34)

APPENDIX C: FLAT BULK LIMIT

In this appendix we will show how to obtain the limit of a flat bulk (k → 0) for dS4 branes. Taking the k → 0
limit in the AdS5/dS4 background needs special care because our usual reparametrization of the extra dimensional
coordinate y, z = cothk(y − y0), breaks down and the input parameters, vi = kM2

i /M
3 and wi = Vi/2kM

3, are ill-
defined. Therefore, it is easier to redo our analysis directly with k = 0. That is, we work on an M5/dS4 background.
Let us define the following combinations of brane parameters and the fundamental Planck mass,

λi ≡
M2
i

M3
, Ui ≡

Vi
2M3

. (C1)

Solving for the background is straightforward, and we get

G
(0)
MNdxMdxN = a2(y)γµνdx

µdxν + dy2 , (C2)

where a = 1 + ǫ0Hy with ǫ0 = +1 for the self–accelerating branch and ǫ0 = −1 for the standard one. Here γµν is the
dS4 metric. The values of H and L are determined by the brane-boundary equations:

0 =
λ0

2
H2 − ǫ0H− U0

12
, (C3)

0 =
λL
2

(

L+
ǫ0
H

)−2

+
(

L+
ǫ0
H

)−1

− UL
12

. (C4)

We first look at the radion. Following footsteps of §5 of [8], we can get the equations of motion for the massless
scalar degrees of freedom. Solving them, we obtain

ϕ1(x, y) = −f2(x)H2
+

C(x)

a(3−ǫ0)/2
+

D(x)

a(3+ǫ0)/2
− F(y)ψ(x) , (C5)

ϕ2(x, y) = f2(x) +
(a′

a
F(y) + H2F(y)

)

ψ(x) . (C6)

f2(x) turns out to be a pure gauge field and will be killed. Plugging (C5) into the brane-boundary equations gives

αiC + βiD =
F(yi)

H ψ , (C7)

where

αi = −θi(3ǫ0 − 1)/2 · a−(1−ǫ0)/2
i + λiHa−(3−ǫ0)/2

i

θi + ǫ0λiH/ai
, (C8)

βi = −θi(3ǫ0 + 1)/2 · a−(1+ǫ0)/2
i + λiHa−(3+ǫ0)/2

i

θi + ǫ0λiH/ai
, (C9)
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with ai = a(yi).
At the massive level, a solution of the bulk equations of motion is now

bµν(x, y) = a(1−
√

9−4q)/2Aµν(x) + a(1+
√

9−4q)/2Bµν(x) , (C10)

and the brane-boundary equations provide the determinant equation, which gives the mass spectrum;

0 = {(3 +
√

9 − 4q)ǫ0 −Hλ0q} · a(−3+
√

9−4q)/2
L {(−3 +

√

9 − 4q)(ǫ0 + HL) −HλLq}
− {(−3 +

√

9 − 4q)ǫ0 + Hλ0q} · a−(3+
√

9−4q)/2
L {(3 +

√

9 − 4q)(ǫ0 + HL) + HλLq} . (C11)

Let’s look into the self–accelerating branch(ǫ0 = +1). Here, since α0 = αL = −1, we can fix the gauge function
F (y) such that F(yi) = χβi with the constant χ a residual gauge parameter. This choice kills the C mode and

D =
χ

Hψ , (C12)

which redefines (26) for M5/dS4 background;

Y1(y) =
χ

Ha−2 − F , Y2(y) = χHa−2 +
H
a
F . (C13)

Working out the quadratic action, we finally get

Cψ =
3χ2H

2

∑

i

( yi
yi + 1/H

− 1

θi +H(yi + λi)

)

. (C14)

Also with ǫ0 = +1, (C11) becomes

0 = {(3 +
√

9 − 4q) −Hλ0q} · a(−3+
√

9−4q)/2
L {(−3 +

√

9 − 4q)(1 + HL) −HλLq}
− {(−3 +

√

9 − 4q) + Hλ0q} · a−(3+
√

9−4q)/2
L {(3 +

√

9 − 4q)(1 + HL) + HλLq} . (C15)

We can match the above with the recent results of Izumi et al. for braneworld models on a M5/dS4 background with
a finite extra dimension [28]. The conversion from our setup to theirs can be achieved by the following identifications:

λ0, λL → 2rc, Vi → τi. Then correspondence among derived quantities follows: H → H+ = Ĥ+ + 1/rc, L →
1/H− − 1/H+, q → m2

i . Upon making these substitutions, (C14) and (C15) turn into

Cψ = 3χ2(Ĥ+ −H−)
1 + (1 + 2Ĥ+rc)(1 + 2H−rc)

(1 + 2Ĥ+rc)(1 + 2H−rc)

= 3χ2
{ Ĥ+(1 + Ĥ+rc)

1 + 2Ĥ+rc
− H−(1 +H−rc)

1 + 2H−rc

}

. (C16)

This expression is a positive constant times times the expression in eqn. (2.42) of [28]. Similarly:

0 =
(

3 − 2H+rcm
2
i +

√

9 − 4m2
i

)

×
(H+

H−

)(−1+
√

9−4m2
i
)/2(

− 3 − 2H−rcm
2
i +

√

9 − 4m2
i

)

−
(

3 − 2H+rcm
2
i −

√

9 − 4m2
i

)

×
(H+

H−

)−(1+
√

9−4m2
i
)/2(

− 3 − 2H−rcm
2
i −

√

9 − 4m2
i

)

, (C17)

which is 4H− times the determinant of the expression in eqn. (2.35) of [28]. The normal branch solutions (ǫ0 = −1)
can be worked out similarly.
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